Cross-Domain Error Minimization for Unsupervised Domain Adaptation

نویسندگان

چکیده

Unsupervised domain adaptation aims to transfer knowledge from a labeled source an unlabeled target domain. Previous methods focus on learning domain-invariant features decrease the discrepancy between feature distributions as well minimizing error and have made remarkable progress. However, recently proposed theory reveals that such strategy is not sufficient for successful adaptation. It shows besides small error, both labeling functions should be across domains. The essentially cross-domain errors which are ignored by existing methods. To overcome this issue, in paper, novel method integrate all objectives into unified optimization framework. Moreover, incorrect pseudo labels widely used previous can lead accumulation during learning. alleviate problem, obtained utilizing structural information of classifier we propose curriculum based select samples with more accurate pseudo-labels training. Comprehensive experiments conducted, results validate our approach outperforms state-of-the-art

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Boosting for Unsupervised Domain Adaptation

To cope with machine learning problems where the learner receives data from different source and target distributions, a new learning framework named domain adaptation (DA) has emerged, opening the door for designing theoretically well-founded algorithms. In this paper, we present SLDAB, a self-labeling DA algorithm, which takes its origin from both the theory of boosting and the theory of DA. ...

متن کامل

Unsupervised Transductive Domain Adaptation

Supervised learning with large scale labeled datasets and deep layered models has made a paradigm shift in diverse areas in learning and recognition. However, this approach still suffers generalization issues under the presence of a domain shift between the training and the test data distribution. In this regard, unsupervised domain adaptation algorithms have been proposed to directly address t...

متن کامل

Joint cross-domain classification and subspace learning for unsupervised adaptation

Domain adaptation aims at adapting the knowledge acquired on a source domain to a new different but related target domain. Several approaches have been proposed for classification tasks in the unsupervised scenario, where no labeled target data are available. Most of the attention has been dedicated to searching a new domain-invariant representation, leaving the definition of the prediction fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-73197-7_29